
Chapter 9

Software and computing

9.1 Overview

The task of the MINOS o�ine software is relatively simple compared to that of the large

collider experiments. The MINOS detector is monolithic, a simple repetition of scintillator

and steel planes, whereas collider experiments contain a multiplicity of di�erent and com-

plicated detector elements. As discussed in Chapter 6, the data rates in the far detector are

very low and even those in the near detector are small compared with a pp or p�p collider.

Thus writing the o�ine analysis code is not expected to be a major load and the processing

and data storage requirements are modest. This chapter discusses our plans to provide the

e�ort and resources that will be needed both to process our data and to provide the basis

for the subsequent physics analysis.

The functional requirements of the o�ine processing software are four-fold:

1. Generating realistic Monte Carlo events.

2. Finding the hits associated with events, both real data and Monte Carlo.

3. Separating the hits associated with a muon and �tting its momentum and direction

through the magnetic �eld.

4. Analyzing the hadron/electron shower at the vertex for avor content, energy and

direction.

A considerable fraction of the code that would be required for a �nal system already exists

and has been used in the de�nition of the physics capabilities of MINOS and the design of

the MINOS detectors. It is written in Fortran-77 and runs under UNIX. As described in

Section 9.2, it uses the ADAMO system to de�ne the data structures and GEANT3 together

with the Soudan 2 neutrino generation routines for the Monte Carlo simulation. However

work is required to improve and extend the current code. We are con�dent that this system

will provide a well-engineered and user-friendly o�ine software system. An estimate of the

e�ort needed is given in Section 9.2.

However the MINOS collaboration is becoming increasingly concerned about the future

of Fortran, and in particular about future support for the tools (such as CERNLIB, ADAMO

9-1

and ZEBRA) which will be vital for the maintenance of a Fortran system over the lifetime

of MINOS. In recognition of this concern, and of the potential advantages o�ered by recent

progress in programming techniques, the collaboration is investigating the use of a new C++

Object Oriented o�ine program system[1]. Section 9.3 describes the advantages of such a

system and the e�ort and costs involved in its production.

In Section 9.4 we discuss the event rates expected and estimate the computing power and

data storage required to deal with MINOS data and Monte Carlo events. We �nd that the

requirements are modest. At the far detector a farm of ten 300 MHz processors, 50 Gigabytes

of disk storage and a small permanent storage facility compatible with the Fermilab central

store is needed. About 700 Gigabytes of data per year will be produced. At the near detector

a farm of 20 processors for data and 6 for Monte Carlo together with 1.3 Terabytes per year

of data storage is required. We expect to use the Fermilab central facilities to provide the

near detector requirements.

Our data processing model, data distribution scheme and plans for physics analysis are

detailed in Section 9.5.

The overall status the MINOS o�ine software system is summarized in Section 9.6

9.2 The current Fortran analysis code

The current MINOS software[2] is based on Fortran-77 code supported by a variety of non-

commercial libraries such as CERNLIB. Only minimal deviations from the standard were

permitted; the allowed extensions are commonly supported features such as the use of long

names and the #include facility for common block synchronization. The Fortran-77 ap-

proach allowed the MINOS software group to proceed without the learning curve that an

Object Oriented (OO) model would have entailed { MINOS collaborators could contribute

by taking advantage of their prior knowledge and familiarity with packaged software.

The major addition to the traditional HEP software tools used by experiments at Fermilab

was the inclusion of ADAMO[3] as the interface to the data structures. The ADAMO package

is a CERN/DESY-supplied set of routines for bridging the gap between a ZEBRA/BOS

memory manager and a more OO-oriented model. This package has also been used by the

Aleph, Hermes, Zeus and Selex experiments. ADAMO completely hides the complexity

of the ZEBRA memory manager and substitutes a uni�ed access to the structures which

provides more security against data corruption. In addition it provides more portability.

Event �les contain an embedded representation of the data model at the time it was created;

this allows the data structures to evolve as the understanding of our needs change, while

retaining the ability to read previously generated �les without signi�cant user intervention.

The �les themselves are an ADAMO structure overlaying a ZEBRA machine-independent

format; this allows the event �les to be exchanged between platforms. Event generation

and analysis has occurred on SGI, Sun, HP, IBM-AIX, and DEC OSF/1 machines with

essentially no machine-dependent code written by the MINOS software group.

The conceptual model of ADAMO represents the data in tabular form. Columns represent

attributes (e.g., volume identi�ers, or components of a 4-vector), while each row represents

an individual object. Relationship links allow connections between di�erent objects of the

same or di�erent types. Intrinsic support routines furnish indexing (sorting and selection)

9-2

along di�erent attributes or combinations of attributes. These sorted lists are automatically

maintained by the ADAMO system and are handled without excessive overhead. They are

then available to all routines accessing the data structure. Using the indexing capabilities

avoids the need for much of the code users would write to perform looping and sorting and

which is often error prone and time consuming. Data integrity checks are also a standard

feature of ADAMO.

Long term prospects of this approach are uncertain to some degree. The ADAMO pack-

age, while stable and without known bugs, is receiving only minimal support { the authors

have been pressed into service on other projects. The ZEBRA and GEANT3 packages are

due to have CERN support dropped in the forseeable future. The source code for all these

packages is available, but modi�cations to support the idiosyncrasy of new platforms may

prove to be di�cult. However we expect a substantial user community to be committed to

these packages throughout the lifetime of MINOS.

9.2.1 Beam simulation

Some of the neutrino oscillation tests, such as the ratio of ratios of charged to neutral current

events in the far and near detectors, are relatively insensitive to details of the beam and beam

simulation. Others, however, such as the charged current total energy spectrum test, may be

systematics limited by knowledge of the beam. Hence beam simulation and comparison to

data will be an important and time consuming task. The most detailed feedback to the beam

simulation will come from monitoring the charged current event rate in the near detector,

as a function of event energy, event vertex radius, and event time (since the magnetic �elds

in the pulsed horn system vary over the spill). Comparisons will also be needed with the

beam muon monitoring system. Understanding the hadron production model in the target

is especially crucial to a good understanding of the beam, and will have to be much more

developed than was needed for beam design.

Three particle physics Monte Carlo programs have been used to predict neutrino uxes

in beam studies so far. GNuMI, NUADA, and PBEAM � beam simulation packages trade o�

speed versus range of e�ects that are included, as shown in Table 9.1. Being essentially

independently developed, they also serve as cross-checks of the calculations.

NUADA, originally written by Wilber Venus at CERN and modi�ed and extended by David

C. Carey at Fermilab[4], generates a matrix of production angles and momenta for �� andK�

at the target, and tracks this \mesh" through the focusing system. At each step along each

track, it integrates a neutrino ux at the detector which combines the production probability

for that angle and momentum, the decay probability for that track, and the acceptance of

the detector. Thus it is actually a calculation rather than a Monte Carlo. Continuing care

is required to ensure that the granularity of the mesh is �ne enough.

PBEAM, written by Noel Stanton at Kansas State University and with weighting methods

incorporated by Wesley Smart at Fermilab, generates ��, K�, and K
0 in a Monte Carlo

fashion, and tracks them through the focusing system. Absorption of hadrons in the horns is

taken into account, but secondaries are not generated. Each hadron is then decayed at one

position. PBEAM contains the option of generating neutrino uxes two ways, either selecting

random decay angles (i.e. unweighted Monte Carlo), or calculating the weight for that decay

to produce a neutrino in the detector acceptance, a method developed by Rick Milburn of

9-3

Tufts University.

GNuMI, written by James Hylen and Adam Para at Fermilab[2], generates neutrino uxes

in a manner similar to PBEAM. It di�ers from PBEAM in being GEANT based, and in the larger

number of e�ects that it includes. GNuMI was developed speci�cally for NuMI beam design.

It includes code to properly handle the e�ect of polarization in the �! �! � decay chain,

including the angle and energy correlations, which is not part of GEANT.

NUADA PBEAM GNuMI

Typical run time 0.2 hr 2 hr 200 hr

�
�
;K

�
! ��; �� yes yes yes

K
0
L
! ��; ��; �e; �e no yes yes

�
�
! ��; ��; �e; �e no yes (ignores yes

polarization)

3 body decay model none phase space V-A

Hadron absorption by horns etc. yes yes yes

Secondary interactions from horns etc. no no yes

� (for monitor chambers) no yes yes

Baryons (monitor chambers, radiation) no no yes

Unweighted decays no yes yes

Weighted decay to detector K;� K; � K; �; �

Table 9.1: Comparison of programs used for neutrino beam simulation.

The speed of NUADA is useful when a large number of variations of parameters are to be

considered, but care must be used when interpreting the results. The wide band beam horn

shapes were optimized with NUADA. The alignment studies used PBEAM's more realistic Monte

Carlo tracking, at some cost in speed. GNuMI's larger range of physics e�ects are necessary

for background studies of wrong-avor neutrinos, and for calculating e�ects of secondary

production from the horns and decay pipe walls. Table 9.2 shows the list of decays which

contribute signi�cantly to neutrino production in NuMI, and how they are modeled in GNuMI.

The work necessary for beam simulation and comparison with data will probably involve:

� Replacing the current GEANT/FLUKA model of hadron interactions in the target

with another model; perhaps with an updated version of FLUKA or MARS or with

data from a dedicated measurement of the production spectra using the NuMI beam

and target.

� Developing techniques to use simulated events in the near detector in a weighted fash-

ion, or to use data driven event reconstruction e�ciencies, since brute force simulation

of events to model the time, position, and energy beam dependence in the near detector

would be too expensive in CPU time.

� Making multiple runs of GNuMI or GNuMI-like beam simulation, with variations of pro-

duction and alignment parameters.

9-4

Parent c� Daughter Branching Ratio Type

�
+ 7.80 m �

+
�� 100 % Isotropic

�
� 7.80 m �

�
�� 100 % Isotropic

K
+ 3.71 m �

+
�� 63.51 % Isotropic

e
+
�e�

0 4.82 % Isotropic V-A

�
+
���

0 3.18 % Isotropic V-A

K
� 3.71 m �

�
�� 63.51 % Isotropic

e
�
�e�

0 4.82 % Isotropic V-A

�
�
���

0 3.18 % Isotropic V-A

K
0
l

15.49 m �
�
e
+
�e 19.35 % Isotropic V-A

�
+
e
�
�e 19.35 % Isotropic V-A

�
�
�
+
�� 13.50 % Isotropic V-A

�
+
�
�
�� 13.50 % Isotropic V-A

�
+ 658.65 e

+
�e�� 100% Polarized V-A

�
� 658.65 e

�
�e�� 100% Polarized V-A

Table 9.2: Decays which produce neutrinos in GNuMI.

Based on experience with the current version of GNuMI, approximately one CPU-year will

be required for the beam simulation, in addition to the time required for simulation of the

events in the near detector.

9.2.2 Detector event simulation

The simulation of neutrino interactions in the detector is a signi�cant portion of the MINOS

computing e�ort. In order to accomplish this task, a GEANT-based Monte Carlo program

gminos has been written. The gminos program combines a exible description of the detector

geometry, the ux from GNuMI, our best understanding of the neutrino interaction physics,

and the simulation of the properties of the scintillator and photodetectors with the standard

GEANT-supplied tracking and particle interaction routines.

Runs of gminos are controlled by FFREAD data cards which describe the run parameters;

the geometry con�guration; the event generator switches; and the tunable parameters in the

active detector response. A gminos output �le is an ADAMO structured �le containing

the data models and the actual data for once-per-run information (such as the geometry)

followed by individual event records. Figure 9.1 shows a block diagram of gminos.

Most MINOS collaborators eschew the actual running of the gminos program which is

generally left to a few experts. Conditions for runs are agreed upon by the collaboration

as a whole. The experts set up the data card �les to match the conditions and submit the

jobs to various machines (including a farm of batch nodes) for event generation. At the time

of this report the collaboration has generated hundreds of thousands of MINOS neutrino

interactions under a variety of conditions. These �les are available from a central location

on the Fermilab AFS �le system. Individuals with particular needs for runs with special

9-5

geometry

kinematics + fragmentation

Beamline simulation (gNuMI)

(neugen)

detector
configuration

ν N cross sections
(neugen)

magnetic
field map

tracking

particle list

+ (A,Z)

hits

active detector response

active detector
parameters

Detector Simulation (gminos)

ν

scintillator light yield
fiber attenuation
optical summing (multiplexing)

digitizations

photo detector response

far flux near flux

Event files

Event reconstruction (reco_minos)

beam design

Figure 9.1: Block diagram of the gminos program. The major units of the detector simula-

tion are shown. Their relationships with each other and outside elements are diagrammed

schematically.

9-6

conditions are encouraged to run gminos on their own with support, as necessary, from the

experts.

Modularity of the code functionality has been stressed so that sections of the code can

be replaced without undue adverse e�ects. The following Sections describe the major com-

ponents to the gminos program.

9.2.2.1 Interface to GNuMI ux

The output of the GNuMI simulation of the beamline is condensed into intermediate ux

�les by a separate stand-alone program. The ux �les are a convenient format for use by

gminos. By using a standard �le format for the interchange, a user can change the ux used

by gminos by simply changing a data card and supplying the new ux �le. This provides a

means for exploring the e�ects of di�erent beamline con�gurations. E�cient near versus far

detector event generation can be achieved by using di�erent ux �les derived from the same

original GNuMI beamline simulation, resampled over the appropriate solid angle subtended

by the detector.

In the case of the far detector, events can also be generated using a wide, arti�cial beam

spectrum which can be weighted to simulate any of the three PH2 beam con�gurations (high,

medium, low energy). This is possible because the beam at this location has a negligible

divergence so there is no need to worry about the correlations of the neutrino direction with

neutrino type and energy. The weighting factors are derived from histograms of the GNuMI

ux. This approach reduces the need for a large Monte Carlo data sample for each beam

con�guration, which saves both disk space and CPU processing time.

9.2.2.2 NEUGEN: The MINOS event generator

All gminos simulations use the NEUGEN neutrino event generator to model the neutrino

interaction, producing from an input neutrino and nucleus type a list of �nal state particles

which are then returned to the detector simulation. In this Section we present a brief overview

of the physics of the event generator and plans for further improvements.

At low energies, charged current neutrino interactions are predominantly quasi-elastic

and single pion production, in which the neutrino scatters o� an entire nucleon rather than

the constituent partons. The cross section for quasi-elastic scattering is expressed in terms

of the weak form factors of the nucleon. The vector components can be related to the well-

measured electromagnetic form factors via the CVC hypothesis, and the axial vector form

factor has been measured in numerous low energy bubble chamber (100 MeV - 10 GeV)

experiments. For tau production, retaining terms proportional to the produced lepton mass

leads to a signi�cant contribution to the cross section from the pseudoscalar form factor. The

contribution from this form factor is negligible for muon or electron neutrino scattering, and

as such it is at present unmeasured in neutrino interactions. For the purposes of our simula-

tions a theoretical expectation based on the PCAC hypothesis is used. Generation of single

pion �nal states through resonance production is based on the neutrino production model of

Rein and Seghal[5] and the Feynman, Kislinger and Ravndal model of baryon resonances[6].

This model treats the baryon resonances as the excited states of the 3-quark system bound

by a relativistic harmonic oscillator potential. The matrix elements for neutrino induced res-

9-7

onance production are then calculated directly from the bound state wavefunctions. Single

pion production is dominated by production of the �(1232).

At higher energies, the neutrino scatters o� the partons within the nucleon. Neutrino

deep inelastic scattering has been studied with high precision in the energy range 10 to

200 GeV by a number of experiments. DIS cross sections are again written in terms of

form factors which can be now be expressed in terms of the constituent parton distributions.

Tau production introduces an added complication in that form factors which are usually

negligible (W4 and W5) must now be retained. Although unmeasured, their expectation in

terms of parton distributions is known. Hadronization of DIS-generated �nal states is done

using a scheme based on KNO scaling. The KNO model used has been tested and shown to

be valid for neutrino induced hadronic �nal states.

NEUGEN also needs to take into account the fact that the nucleons participating in

the interactions are not free but are bound within the nucleus. The two most important

nuclear e�ects for low energy scattering are the Fermi motion of the struck nucleon and Pauli

blocking of interactions with small momentum transfers. Both e�ects are modeled with a

Fermi gas model of the nucleus. In this model all nucleon energy levels up to the Fermi

momentum Pf are considered to be �lled (thus generating the Fermi momentum spectrum),

and momentum transfers which leave the �nal state nucleon with momentum smaller than

the Fermi momentum are not allowed.

NEUGEN grew out of the neutrino event generator used by the Soudan 2 collaboration

to model atmospheric neutrino interactions[7]. In this capacity the generator has been in

use since 1987, and has been well tested - particularly at the lower neutrino energies of

atmospheric neutrinos. Numerous comparisons to published data have been made, and

experimental DSTs from the BEBC experiments, which took nearly 750,000 bubble chamber

pictures in runs from 1977-1983, have been made available to the collaboration for more

detailed comparisons which are currently underway. NEUGEN has also been made available

to other neutrino experiments.

Ultimately one would like to address the question of the extent to which uncertainties

in the physics models will a�ect the sensitivity of a given experiment. As a two-station

experiment, MINOS is to �rst order insensitive to such uncertainties, as has been shown in

previous studies. Nevertheless, it is for such studies that one would like to have a generator

which incorporates the full range of physics models which have been proposed. One then uses

existing data to determine the models and ranges of model parameters which are consistent

with current measurements. This process of model inclusion and data comparison is an

ongoing one which will continue over the next few years as NEUGEN continues to evolve

and improve.

9.2.2.3 Interface with NEUGEN

NEUGEN outputs a list of particles in STDHEP form. The gminos-speci�c code pulls a neu-

trino from the ux �le; samples the detector along the neutrino's path; decides on whether

an interaction occurs; chooses a vertex position and nucleus type; calls the kinematics gen-

erator and enters the STDHEP list into GEANT's list of particles to track. This procedure

correctly accounts for the distribution of material along the neutrino path and the relative

proportions of nuclei, based on the geometry of the current run. The code is modular enough

9-8

that the cross section or kinematics routines can be improved or even completely replaced

without major impact on the gminos code downstream from the interface.

9.2.2.4 Geometry

Although the �nest-level details of the MINOS geometry are still being de�ned, handling

future changes is not expected to require signi�cant new code. The gminos code provides

a simple user interface which allows substantial recon�guration of the detector for a wide

variety of parameters. These parameters are then converted into standard GEANT geometry

descriptions of the detector. By making the geometry description su�ciently abstract one

can describe both the near and far detectors without need for separate parallel code.

9.2.2.5 Tracking and hit storage

Particles are tracked through the GEANT geometry in the usual manner. Di�erent maps

for the magnetic �eld can be set along with the geometry speci�cation. These �eld maps

are generated by the MINOS magnet group (Chapter 4) and are speci�ed relative to a single

steel plane's local coordinates. The gminos code then performs the appropriate coordinate

transformations.

Pertinent information is recorded for each particle traversing an active detector volume.

These attributes include the volume identi�ers, energy deposition, entering and exiting po-

sitions. These objects are designated as hits and contain the exact, unknowable information

about the particle's traversal.

9.2.2.6 Digitization

The �nal step of the detector simulation process is collecting together the hits in a volume

and converting them into digitizations. The digitizations (digits) are the combined e�ect

of individual particles interacting within the active volume. These digits will closely mimic

the types of signals that come out of the front-end electronics, described in Chapter 6. This

process of modeling the active detector response encompasses the light production (including

Birk's Law saturation e�ects[8]) in the scintillator, light collection and re-emission in the

wavelength shifting �ber, attenuation in the �ber and photodetector response. The �nal

result gives realistic results for the photoelectron statistics.

We have chosen to retain the hits in the data �les. This imposes a large space penalty but

allows us to reuse the same events while varying the speci�cs of the digitization process. By

doing so we can investigate the e�ects of di�erent scintillator light yields, �ber attentuation,

and other possible changes in instrumentation details. The redigitization can be done in the

analysis framework (described in Section 9.2.3) just prior to the event reconstruction.

9.2.3 Event reconstruction

A framework for event �le processing has been developed: the reco minos package stan-

dardizes the reading and processing of �les currently generated by the gminos program and,

when the time comes, real events written in a compatible format. This shell incorporates

9-9

ADAMO's ability to skip event input based on information in the header bank, allowing

quick access to selected events in a �le. Figure 9.2 shows a ow diagram of reco minos.

At a minimum, the user need only supply routines for their own histogram booking and

event processing, a list of event �les and a set of data cards for controlling the analysis. Hooks

are provided to allow users to supply routines to handle di�erent phases of �le processing.

The user's event processing routine can call upon collaboration supplied routines for basic

reconstruction. These routines are still being developed and re�ned. While it is likely that

much of the currently available code will not survive unmodi�ed to the time data-taking

begins, it is has been a good introduction to what the �nal requirements will need to be.

This insight will lead to better algorithms in the future. Even these incomplete algorithms

have provided feedback for use in detector hardware decisions.

9.2.3.1 Demultiplexing and attenuation correction

A framework for simulating the optical summing (multiplexing) of multiple �bers on sin-

gle photodetector pixel has been developed. Simultaneously, a program to disentangle the

multiplexing is being tested.

An algorithm has been written to account and correct for the light loss due to the

attenuation in the wavelength shifting �ber, using nearby strips in the orthogonal view to

determine the average position in a cell. This correction is necessary for achieving the good

energy resolution which is intrinsic to the MINOS scintillator detector technology.

9.2.3.2 Vertex �nding and event separation

A generic vertex �nder has been written and gives adequate results. Alternative �nders that

improve on this for speci�c event topologies can be added to run in parallel.

Algorithms for separating out simultaneous events in the detector have not yet been

considered.

9.2.3.3 Muon reconstruction

The problem of tracking and �tting muons in MINOS is more complicated than in conven-

tional detectors as they lose a large amount of energy in traversing the steel plates, many

coming to rest. Furthermore the toroidal �eld is di�erent in direction at each point along

the track and multiple coulomb scattering plays a large role in de�ning the track trajectory.

A iterative least squares method of coping with these di�culties, patterned after the CDHS

approach[9, 10], has been adapted for MINOS. Muon reconstruction is performed in two

stages.

First, the hits associated with the muons are found by searching for track segments in

each view. The longest segment is taken as the track basis and extrapolated out to the edge

of the detector (or end of the track) and back to the hadron shower. Currently it does not

attempt to extrapolate back to the vertex in the shower but ultimately this should be possible.

Second, the muon hits are �tted to a curved trajectory. By tracking the muon through the

detector material, the energy loss of the muon and its multiple Coulomb scattering can be

calculated, producing a full non-diagonal weight matrix for the �2. The trajectory equations

can be then solved by iterative least squares, yielding values for the parameters plus a full

9-10

initialize HBOOK and ADAMO

define system FFREAD cards

read FFREAD data cards

reco_hist

read from list of files to process

reco_notevt

reco_finish

reco_init

reco_end_run

reco_new_run

reco_event

event?

yes

no no

no

new run? previous run? reco_end_run
yesyes

define user FFREAD cards

process geometry records

run dependent initialization

end-of-run processing

end-of-job processing

(see below)

redigitization of hits

user defined event processing - including:

photodetector response
attenuation correction
vertex finding
muon tracking + momentum determination
shower energy + angle determination
event classification
event display (graphics)

book user histograms + other user run independent initialization

EOF?
yes

no

open event file

read ADAMO record

EOF?

yes

no

Figure 9.2: Flow diagram for the reco minos program. The routines that users write are

shown as shaded boxes. Dummy routines are used if no routine is supplied.

9-11

error matrix. However, when the muon is close to stopping, its increasing departure from

linearity means that care must be taken to avoid the �nal segment of the track in the �t.

This procedure yields momentum errors of � 13% and angular resolutions of � 0:03 radians

when muons are �tted over � 400 planes.

For short, stopping muon tracks that are fully contained in the detector, a simple track

length measurement will result in an even better estimate of the muon energy, although

curvature is still necessary for determining the charge.

9.2.3.4 Shower energy and angle determination

Preliminary routines have been written for energy (photoelectron summing) and shower

angle determination, but have not been extensively tested. In particular the energy sum is

dependent on the attenuation correction; energy resolutions signi�cantly su�er if it is not

applied. The existing code does not yet attempt to remove the overlapping muon track, but

this will be remedied in the future as both this code and the muon tracking code improve.

9.2.3.5 Event identi�cation

We have used event classi�cation heuristics (NC versus CC, �e versus �� versus �� , etc.)

in various studies of MINOS sensitivity to neutrino oscillations[2, 11, 12]. We have not

mounted a systematic attempt to generate the best-possible approach for all cases. Rather,

estimates of the signal e�ciency and background rejection set a lower limit on how well the

experiment might perform. More sophisticated approaches will give some improvement but

are not expected to change the conclusions of our current analyses.

The NC versus CC classi�cation proceeds on two levels. The simpler approach is to

not attempt event-by-event classi�cation. Instead, we separate the events into two classes

that to a large degree overlap the physical process, but are easily identi�ed in real event

topologies where an estimate of the cross contamination can be made. This is the approach

of using \short" and \long" events as initial estimators of the NC and CC events. Once so

classi�ed then the unfolding of these into NC and CC events proceeds at the statistical level.

The second approach to NC versus CC classi�cation is to attempt pattern recognition of the

muon track. This is part of the muon reconstruction code described above.

We have developed techniques for neutrino avor determination in two broad categories.

One approach has been to use cuts on the distributions of event characteristics and recon-

structed quantities to distinguish the categories. The other methodology uses essentially the

same quantities but presents them to an arti�cial neural network (ANN) for identi�cation.

The ANN is �rst trained to classify the events by presenting it with a test sample of known

types. It is then tested with a separate sample of events; the result of the test is a value

between 0 and 1 that serves as an estimator of how likely it is to be of the type represented

by the output value. As the threshold on this output value is increased, the e�ciency for

correctly classifying the signal goes down, but the rejection of background goes up. The

optimal value for the threshold may depend on the exact analysis in which the classi�cation

is being used. Generally the cuts and ANN approaches have yielded very comparable re-

sults in tests where both have been attempted. It is expected that the ANN method should

generally lead to a slightly better separation.

9-12

Explicit identi�cation of electrons is based on the fact that electron showers are shorter,

narrower and denser than hadron showers. Thus, after selecting \short" events, cuts (or

ANN inputs) based on the charge distribution in the remaining shower produce �� charged

current rejection factors of 700 for �e's. The charged current e�ciency of 14% is su�cient to

give limits for sin2(2�) of 2 � 10�3. This study was performed using the high energy beam

con�guration, but we have also developed similar algorithms for the low and medium energy

neutrino beams.

Identi�cation of explicit � production can be made in various � decay modes. In � ! ���

and � ! e�� the analysis is based on selecting quasi-elastic (low-y) � production, where there

is little hadronic activity at the production vertex. Then, for a given beam � energy, the

kinematics of the events with missing �'s gives lower lepton energies than for equivalent

�� events. Thus in the narrow band beam, kinematically unambiguous � production can be

observed, provided the tails of the beam energy distributions can be kept under control. The

decay � ! � +X can be isolated by selection of high energy �'s which interact to produce

hadronic \stars". The background from neutral current � production is suppressed because

the energy distribution of these �'s is much softer than that from � decay. Limits on sin2(2�)

down to around 0.2 can be obtained[13].

All of these explicit tests for �e and �� production involve detailed reconstruction of the

hadron shower, including possibly the reconstruction of individual tracks and showers within

the overall hadron shower. Techniques for this reconstruction are still rudimentary but are

expected to be signi�cantly improved before data is available.

9.2.3.6 Graphics

Computer graphics plays an important role in many aspects of an experiment. For the

standard tasks of data analysis, �tting, and presentation graphics MINOS currently uses

CERN software, including PAW and HIGZ.

Graphics are also used to display simulated data and reconstructed events both for algo-

rithm development and to demonstrate event types and topologies. An X-based, interactive

3D graphics system based on VINES (Erik Gottschalk, Univ. of Illinois) is available on a few

of the computer platforms used by the collaboration. A limited, static event display using

HIGZ and HPLOT routines is available on all platforms. Rudimentary information about

hit location and pulse height are displayed, but without any interactivity. Users can supply

calls to familiar routines to add additional information.

We have begun work to produce a more exible and portable display based on an OO

paradigm. Two e�orts are currently being pursued. In one project the MINOS event data

and analysis code are being integrated into the ROOT software system currently under

development at CERN by Rene Brun and collaborators. In the other, we are investigating

the use of OO-based Internet tools to produce portable events displays. A prototype display

employs Java and VRML to produce 3D virtual-reality event displays and associated analysis

tools.

9-13

9.2.4 Code management

9.2.4.1 Code manager/librarian

The responsibility for managing packages in the MINOS collaboration central software repos-

itory and for maintaining their functionality will be vested primarily in the designated li-

brarian or code manager. Deputy managers may have responsibilities concerning details of

individual packages/libraries. In particular, the code manager will be responsible for:

� promulgating and enforcing coding practice standards

� regulating changes to the central repository

� informing collaborators of the use and availability of outside software packages required

by collaboration code.

� disseminating documentation of collaboration code (via the World Wide Web).

� maintaining E-mail distribution lists for current software news and discussion.

9.2.4.2 MINOS software repository

The central repository makes the common code accessible to all members via the program

CVS (Concurrent Versions System[14]). CVS allows access to a central repository by a

remote computer. Thus it is only necessary to have a complete repository at one location,

helping to minimize the possibility of divergence in collaboration-standard programs. The

MINOS source code repository will eventually grow to include all collaboration-standard

programs for simulations, event reconstruction, physics analysis, and event display. The

GEANT-based detector simulation gminos, as well as analysis/event reconstruction routines

in the context of the reco minos program, are now available in the CVS repository. Checking

a program module out of the repository provides the user with copies of all the source code

�les as well as the Makefiles necessary to construct libraries and executable programs.

9.2.4.3 Software development and distribution using CVS

CVS is a tool for version management and code distribution during the software development

phase. Built on top of the older RCS (Revision Control System), CVS adds the exibility of

allowing multiple developers to work on the same source �les concurrently. Each program-

mer/user checks out copies of the desired �les from the central repository into a personal

work area on his/her home computer. The local copies of the �les can be modi�ed or deleted

as the user desires without e�ect on the standard repository version. The repository version

is only changed upon the explicit request of the CVS user. Thus the system accommodates

both users who wish to modify the source code for their own use or for redistribution to the

collaboration, as well as those who merely want to build a standard executable program for

their studies.

Once a �le is stored in the CVS repository, a complete history of its evolution thereafter

is recorded by CVS. Any version of a �le can be reconstructed at any time based on one of

the identifying characteristics: date, revision number or symbolic tag.

9-14

CVS has been designed to help resolve the inevitable conicts that arise when more than

one person edits a particular source �le. CVS does not use �le locking which would prevent

concurrent development. Rather, CVS has conict resolution algorithms which sense any

incompatibility between the changes to the local copy and a new repository version. Changes

that can not be resolved generate warnings and in-�le delimited code lines. The user must

then decide whether to alter their code to incorporate the newer revision, or to confer with

the colleague who committed that revision.

The central repository can in principle be updated at will by a user with the changes they

have made to their local source �les. This introduces a conict between program developers

who want the most up-to-date version of the software and are prepared to tolerate bugs,

and users who want only functional, reasonably well-tested code. To resolve this, we are

developing a set of regulations concerning who may actually commit code and requirements

on the functionality at the time it is committed. To date this has been generally very

informal, but as the amount of code and number of users increase so will the level of software

management with alpha, beta, and production code releases controlled by individual package

managers.

9.2.5 Requirements to complete the Fortran o�ine system

Although a considerable amount of code has been written, there still remains a lot of work to

complete a user-friendly, well-engineered system. The code will need revision and reworking

to improve and extend its functionality. The present system also needs the addition of a

database for storage of run and calibration constants along with all the miscellaneous data

that are needed, as well as the raw detector data. The current graphics package is very

rudimentary and will need complete reworking to be made into a exible tool for diagnostic

and debugging work.

It is di�cult to estimate how much e�ort would be required to produce a system adequate

for data taking in 2002, but it probably exceeds ten man-years. We believe that this e�ort

can be found within the MINOS collaboration. The purchase of commercial software will

probably not be required except for the (Oracle) database system.

9.3 The OO alternative

9.3.1 Motivation

It is di�cult to overstate the importance of computing in experimental HEP. It is central,

and essential, to all phases in the life cycle of an experiment, from detector design and

construction through to its operation and analysis of the data it produces. Without the

dramatic advances in computing technology over the past 30 years most of the HEP program

would have been impossible. The clear lesson of this is that we have to keep up to date with

mainstream developments if we are to continue to exploit these advances.

The disparity in the rate at which hardware performance improves compared to that of

software has long been recognized. While hardware performance growth is essentially expo-

nential, software growth is almost linear. A major part of this disparity comes from the way

9-15

hardware engineers manage complexity. By structuring systems into subsystems and hiding

complexity behind simple interfaces, development is simpli�ed. Individual subsystems can

evolve independently and still remain compatible, while new systems can be produced by

assembling the subsystems in di�erent con�gurations. OO is the latest, and most successful,

in a series software engineering paradigms that have attempted to achieve the same level

of structuring in software. Modularization is achieved by hiding complexity through en-

capsulation. Larger systems are broken down into more fundamental ones by abstraction.

These subsystems can then evolve over time through the mechanism of inheritance, while

assemblies of evolved subsystems continue to cooperate.

OO is relevant to experimental HEP because of the common problem domain all exper-

iments address. Common solutions to some of these problems have been very successful,

for example ADAMO, which has been described above. Its success comes from its OO-like

properties. Like any well de�ned class, it presents a simple rugged interface to the user

and provides access mechanisms to the data it holds. However, it does not hide its data

and is of limited help in building modular systems. Until now, most standard HEP soft-

ware systems have provided support for the major o�-line activities of Monte Carlo, Data

Reduction, Event Reconstruction and Analysis, but have stopped short of providing these

functions themselves. So each experiment has had to devote many man-years to developing

code to do this, despite the fact that there are many shared problems and solutions. To pick

just one example in MINOS, we have to be able to �nd and �t muons in our data and are

producing code to to this, despite the fact that such codes were analyzing bubble chamber

�lm 20 years ago. The code robustness that is inherent in the OO model is particularly

important in HEP, where people, with a wide range of skills and understanding of the code,

have to work with it. A properly designed system should allow much greater access to the

code to those outside the core support group, because it is more modular, with fewer side

e�ects to catch the unwary! Its stricter disciplines ensure cleaner code and facilitate code

development, a process that continues throughout the course of an experiment.

As has been stated earlier, the o�ine software requirements of MINOS are very modest;

it is not the case that OO is essential. Indeed, in the short term, an OO alternative will

involve more e�ort. In the longer term this should be repaid in the reduced maintenance

compared to systems such as ZEBRA and ADAMO where support is already becoming very

fragmented. The simplicity of this experiment also makes it a very good one in which to

migrate to OO, a migration that is already underway in all of the larger, next generation

experiments. Beyond the fact that it will give us a natural interface to GEANT4, the

OO replacement of GEANT3, it will ensure that we stay in the mainstream of HEP code

development. Predicting the style of computing 5 or 10 years from now cannot be done with

any great certainty beyond stating that it will be much more powerful and will be di�erent!

By investing the additional e�ort to master OO now we will maximize our ability to best

exploit improvements in the technology.

A small group within MINOS is in the process of studying all the consequences of choosing

OO as the basis of our o�-line software. The remainder of this Section has to attempt to

second guess what that group will learn.

9-16

9.3.2 Requirements for an OO alternative

Choosing the OO route would lead to a number of extra requirements that would not be

necessary for the Fortran route. At least initially there will inevitably be extra costs and

e�ort required. However neither is expected to be large on the scale of the full experiment.

9.3.2.1 Training

Members of our collaboration have little experience with OO and will have to develop their

own set of experts. Fully understanding the subtleties of a language like C++, and how

properly to analyze and design an OO system, demands a higher level of expertise than

that required to understand Fortran-77 and to perform procedural analysis and design on

a system based on a data structure manager. The conventional wisdom is that it takes of

order 6 months to turn a good Fortran programmer into a good OO programmer. Although

the same level of expertise is not required of the rest of the collaboration, anyone who wants

to make a signi�cant contribution to the software will have to become a competent C++

programmer which could take of the order of a month. New post-graduates joining will

probably already be familiar with C++. We estimate that a total of about three man-years

of training will be required within the collaboration.

9.3.2.2 CASE tools

The relationships between classes in OO are much richer than the relationships between rou-

tines of a procedurally based code. Classes may inherit, own or simply use other classes in a

variety of ways. This richness makes the use of CASE (Computer Aided Software Engineer-

ing) tools much more compelling, to help people express, exchange and check consistency of

the systems they are studying. If MINOS uses OO then we will probably need to buy some

CASE tools although the number of licenses can be restricted to core group designing the

heart of the system. Typical costs for popular tools would be around $10,000. However we

do not currently know what tools we need, and might even decide to do without any.

9.3.2.3 Commercial packages

The standardization of interfaces between classes promotes the ability to integrate software

from di�erent sources. At least some parts of the HEP community are now concentrating

their programming e�orts on problems that are unique to the discipline and seeking com-

mercial software solutions to more general problems. Indeed this is the philosophy behind

LHC++: it puts great emphasis on the use of commodity software. They plan to use only

one major software component entirely developed within HEP, namely GEANT4, an OO

version of the GEANT simulation package.

This of course leads to another cost for any experiment that takes this approach. The

whole collaboration will need to run the software; many more licenses are required than

for CASE tools. Estimating the cost of this approach is fraught with di�culty: the result

depends crucially on our computing model, something that the MINOS OO working group

is studying. At one end of the spectrum of choice lies the LHC++ model, which will be

expensive. At the other end is the tradition of sharing software written by and for the HEP

9-17

community. Here the only current candidate is ROOT, a system being developed at CERN

for NA49 and also being studied by a number of other experiments. It appears that we could

use both GEANT4 and ROOT as the basis of our computing model without the need for

any commercial software. There are several advantages to this approach:

� Cost. This could be a zero cost option, at least in �nancial terms.

� An optimal match to the requirements of HEP. There is no need to support generic

requirements that are not part of the HEP problem domain.

� Better control over its development. It responds directly to the changing needs of HEP.

� Long term security. It belongs to HEP with its own unique development time scales.

The last of this list, long term security, is currently the weakness with ROOT. Until

further experiments invest in it, its long term future is uncertain.

9.3.2.4 An OO version of the o�ine system

The MINOS software group is now devoting signi�cant e�ort to developing a new OO equiv-

alent of the Fortran based system described above. Others working in OO have told us that

the only way to learn is by trying and that it is very hard to get it right the �rst time. Here

MINOS has an advantage, relative to other experiments embarked on this course, in that

its requirements are comparatively simple. So we could plan to develop a �rst version on a

one year time frame and then use the experience gained to build a second on a similar time

frame. We estimate that this would require about 10 man-years of e�ort in addition to the

e�ort involved in the updating and improving the algorithms already developed. As for the

Fortran alternative, we expect that most of this e�ort will be available from the collaborating

groups.

9.4 CPU and storage requirements

In this Section we attempt to estimate the amount of cpu power and data storage that

will be required to process and store the data from the MINOS far and near detectors, as

described in Chapters 5 and 6, and to perform high statistics Monte Carlo simulations of

the experiment.

Such estimates are notoriously subject to under-estimate, particularly when the program

systems are not complete and real data has not been experienced. We have tried to make

realistic estimates, based on currently working code, including an allowance for reprocessing

of data. However even with existing code, the variation in timing across di�erent platforms

is large. Also very little e�ort has currently gone into optimization of code and large factors

may well be available. With these uncertainties the estimates given here are probably not

accurate to better than a factor of two. Even thus inated the requirements of MINOS are

modest by today's standards. With the natural progression of computer power we expect to

be able to keep pace with any unanticipated increase in the computer requirements or reduce

our hardware requirements. However, if the worst should occur and both these estimates

9-18

are over-optimistic and extra computer power is not available, it should be noted that in

the estimates below the vast majority of time is spent processing secondary data; cosmic ray

muons or neutrino events outside the beam spot in the near detector. Fast �lters for real

physics data can be developed and the remainder of the data either sampled or processed

with faster, less complete, algorithms.

The timings are in terms of a modern 300 MHz RISC processor which is equivalent to

around 200 MIPS.

9.4.1 Far detector

We assume:

1. A trigger rate of 2 Hz, made up of 1 Hz of cosmic ray muons and 1 Hz of background

noise (radioactivity or electronics). The 22,000 neutrino interactions per year are

negligible in this calculation

2. An average of 300 hit scintillator strips per trigger. This is probably generous because

noise events will be small. There are 192 scintillator strips in a plane. Most cosmic

muons will hit fewer strips than this but high energy muons have a high probability of

producing a showering bremsstrahlung electron in their passage through the detector.

3. Eight bytes per hit read out by the electronics

4. Five seconds processing time per event for a cosmic ray muon. Noise triggers will be

fast, therefore the average processing time per trigger is 2.5 seconds.

5. Data expansion during processing by a factor of 5.

6. Continuous far detector operation with a 90% duty cycle. Running outside beam-on

periods is probably necessary, �rst to obtain su�cient cosmic ray muons for calibration

and second to be continuously sensitive for atmospheric neutrinos and other cosmic

ray phenomena.

7. Storage of raw data and processed information for all cosmic ray muon events. This will

probably not be necessary, after an initial running-in period. The muons are mostly

required for calibration purposes and the data for this will be �ltered o� and stored

as histograms for each scintillator strip. However, if raw muon data are not kept, the

storage requirements are negligible so this represents a worse case.

8. At least in the �rst stages of data taking it will be necessary to reprocess data as the

reconstruction algorithms are re�ned and developed. Since continuous operation is

assumed, this will require that we double the computing power available to enable us

to reprocess in parallel with data taking.

Table 9.3 gives some of the far detector requirements which result from this model.

It can be seen from the Table that a modest farm of 5 cpu's will be adequate to fully

reconstruct all the cosmic ray muons, even assuming no increase in speed beyond today's

models, and assuming that this process is necessary for calibration. Allowing for the data

9-19

Triggers/year 2 � 3 � 107 6 � 107 triggers

CPU processing time/year 2:5 � 6 � 107 1:5� 108 sec

Readout bytes/year 8 � 300 � 6 � 107 1:44 � 1011 bytes

Data stored/year 5 � 1:44 � 1011 720 Gigabytes

Table 9.3: Summary of estimated far detector cpu and storage requirements, including gen-

erous contingency allowances.

reprocessing we will require a farm of 10 processors at the Soudan site. The data storage

requirement is small by today's standards, even if we were to keep all the cosmic muon raw

data.

9.4.2 Near detector

Rates in the near detector are much higher than in the far detector and the processing and

storage requirements are more stringent. We assume:

1. Thirty � events/spill in the target and veto regions of the near detector. Of these, the

0.5 events/spill produced in the central 25 cm radius of the target region are required

for physics comparison with the far detector. The remainder will be used to monitor

and model the beam and for other nonoscillation physics that may be performed with

the near detector.

2. Event rates of 15 muons/spill entering the target region from upstream neutrino in-

teractions and 270 Hz of cosmic ray muons crossing the full detector, in addition to

the neutrino interactions. For calibration purposes the upstream muons, and an equal

sample of the cosmic muons, will be fully reconstructed for each spill. Full reconstruc-

tion of the remaining cosmic muons is probably unacceptable for cpu time reasons

but they may be used in a simple histogramming mode to obtain very high statistics

calibration data. It may be that ultimately the full reconstruction can be dispensed

with.

3. A negligible in-spill random trigger rate.

4. An average of 100 hits/trigger. Near detector events are smaller than the cosmic ray

muon events in the far detector, the muon spectrometer sampling is coarser and the

lower energy muons will not produce large bremsstrahlung showers.

5. Eight readout bytes/hit and 5 times the raw data stored per trigger.

6. One second processing time per trigger.

7. An e�ective year of 107 seconds.

8. One complete reprocessing of the data.

9-20

Triggers/year 60=1:8 � 107 3:3� 108 triggers

CPU processing time/year 1:0� 3:3� 108 3:3� 108 sec

Readout bytes/year 8� 100 � 3:3 � 108 2:6� 1011 bytes

Data stored/year 5� 2:6� 1011 1.3 Terabytes

Table 9.4: Summary of estimated near detector cpu and storage requirements.

Table 9.4 gives the numbers for the near detector quantities.

Ten processors running continuously will keep pace with the incoming data integrated

over a full year. Allowing for reprocessing we will need access to a farm of 20 processors.

This is an upper limit on the cpu usage since less than 1% of the events being reconstructed

are required for MINOS neutrino oscillation physics. If there should be cpu limitations, more

stringent cuts on the events reconstructed could be applied. Similarly, although the data

storage requirement is not large, it may be much reduced if only the calibration information

for each scintillator strip is stored.

9.4.3 Monte Carlo simulation

We expect 22,000 neutrino events per year in the far detector and 2 � 106 per year in the

restricted target volume of the near detector. The Monte Carlo calculation has to:

1. Determine and correct e�ciencies and biases in the reconstruction and selection pro-

cesses in the far detector. The Monte Carlo statistics must be overwhelming compared

to the number of events in the far detector, by at least a factor of 10.

2. Translate the distributions measured in the near detector to those expected in the

far detector, making allowances for di�erences in the beam and the detectors. The

requirement on the accuracy of this transformation is only that the statistical error

should be negligible compared to the statistical accuracy of the far detector data.

Thus a Monte Carlo sample equal to the near detector data sample will be adequate.

We thus expect to require a Monte Carlo sample of approximately 2 � 106 events per

year for the combined near and far detector analysis. In order to study the algorithms used

in distinguishing neutrino types based on event topologies, we must generate events for the

three possible modes of no oscillations and and for oscillations to each of the other avors,

tripling the the number of events necessary.

The current cpu time required for generating an event in gminos is � 20 seconds. Adding

time to generate the beam neutrino and for reconstruction we estimate a total cpu time of

40 seconds per event. The average storage requirements for Monte Carlo events will be

substantially larger than data events. Two contributions to this increase are the additional

space necessary for storing generated truth information and the desire to store intermediate

hit information as well as the �nal digitizations. The hit information allows us to study

the e�ects of uncertainty in light yield, photodetector gain variations and other detector

e�ects without performing the cpu intensive generation and tracking of events. Based on the

9-21

empirical estimates from the current data sets, Monte Carlo events average about 57 kbytes

per event. Table 9.5 gives an estimate of the total cpu and storage requirements for the

Monte Carlo.

Events generated/year 3� 2 � 106 6 � 106

CPU processing time/year 40 � 6� 106 2:4 � 108 sec

MC event size 57 kbytes

Data stored/year 57 � 6� 106 330 Gigabytes

Table 9.5: Summary of estimated Monte Carlo cpu and storage requirements.

A modest processor farm of nine machines dedicated to MINOS Monte Carlo event simu-

lation will provide these events. Generating events under di�erent conditions or regeneration

to correct early de�ciencies could again double these estimates.

9.4.4 Summary of cpu and storage requirements

We have shown that the data processing and storage requirements for the MINOS far detector

and Monte Carlo data are quite modest, even if we fully analyze and store every trigger.

The near detector data rates are much larger but even there the reconstruction and storage

of the full event sample in the target region of the detector is well within the capacity of

the present day facilities at Fermilab. We expect that, with the usual growth in capacity of

the computer industry, by 2002 the load that MINOS places on computing facilities and the

expense of providing them will be minimal.

9.5 Data processing model

Given the event rates and computing requirements described in Section 9.4, we construct

the following model of the data processing and analysis for MINOS:

1. Far detector

� The far detector data will be immediately reconstructed o�ine at the Soudan

mine site. That is, events will be transferred, probably in run-size batches, from

the DAQ system to a small processing farm where full reconstruction will be

performed.

� Candidate beam neutrino events (and other small selected data samples, e.g.,

candidate atmospheric neutrino events) will be �ltered and written to permanent

storage. They will be transferred to Fermilab to the central store, probably by

Internet connection but possibly on a hard storage medium.

� Calibration data from cosmic ray muons will be processed at Soudan and con-

densed to calibration data sets at the processing farm. The calibration sets will

be sent to Fermilab for permanent storage and distribution to the collaboration.

9-22

There will probably be no requirement for raw cosmic ray data to leave the Soudan

mine site.

The processing hardware requirements at the mine will be:

� A farm of approximately 10 cpu's, of a type to be determined by cost and perfor-

mance in the year 2001.

� Disk storage su�cient for a few days data, around 50 Gigabytes.

� A permanent storage medium compatible with the Fermilab central data store in

2001.

2. Near detector

� The near detector data will be processed in a farm of around 20 processors at

Fermilab. It is expected that these will be part of the Fermilab central processor

farm. Instantaneous data rates during runs can be rather high, thus it may only

be possible to process sample runs during data taking, with the remainder of the

data written to permanent storage for processing during beam-o� periods.

� Calibration data will again be condensed to calibration data sets and raw muon

data will not need to be stored.

� Local disk storage will be required only for bu�ering, and data will be written

directly to the Fermilab data store.

3. Monte Carlo

� Monte Carlo generation can be done on the Fermilab farm, or possibly at collab-

oration computer centers. The load is not expected to be large.

� Monte Carlo data will be stored centrally in the Fermilab data store.

4. Data distribution

� All physics neutrino events will be stored with raw data and processed quantities

in the Fermilab data store. These will be accessible to all the collaboration via

AFS or equivalent. If required, local copies of the raw data can be kept at collab-

oration computer centers. This is particularly likely to be the case for overseas

collaborators where link speeds to the U.S. tend to be slow.

� Ntuples will be produced for physics analysis via PAW (or OO equivalent). These

will be generated and stored centrally but are likely to be copied to local areas.

Users may, of course, generate their own ntuples from the raw data.

� Calibration databases will be linked and up-to-date calibration data automatically

distributed to local sites.

9-23

9.6 Summary

The MINOS computing requirements are not large. Stripped to the bare minimum, MINOS

computing could be carried out on a handful of PCs. In practice, rather more than the

minimum of calibration data and events in the near detector are likely to be processed and

kept, at least at the start of data taking. Even with this extra data, the computing load

from the near detector will be well within the capacity of the Fermilab processing farm and

data store, so we propose to use these facilities for MINOS.

We plan to install some computing capacity at the far detector laboratory, if only to

provide insurance against failure or lack of capacity in the links to Fermilab. However the

total hardware requirement will be small, less than $100k for processors and storage.

The bones of an o�ine analysis system already exist, written under Fortran-77. Su�cient

physicist e�ort exists within the collaboration to complete this system before data taking.

The conversion of the system to an Object Oriented C++ form will require more e�ort in the

short term, but may save e�ort in the long term, as support diminishes for the Fortran tools

we use. A group of physicists and physicist-programmers are studying the OO possibilities

for MINOS and, if the collaboration decides to take that route, this group will provide the

majority of the e�ort. However, the addition of one or two programmers from the Fermilab

computing department would greatly ease this process.

The collaboration will require a computer manager to take overall command of the com-

puting system at Fermilab, and a second-in-command at the second site (presumably the

Soudan mine). Also the collaboration needs a systems programmer, or systems oriented

physicist-programmer, to take detailed control of the writing of the o�ine system. If these

people cannot be found within the collaboration we will request them from the Fermilab

computing department.

9-24

Chapter 9 References

[1] \Object Oriented Analysis and Design with Applications" 2nd edition, Grady Booch,

Benjamin Collins 1993.

[2] The MINOS Collaboration, \MINOS Experiment R&D Plan: FY 1996-1998," June 1996,

Fermilab report NuMI-L-184.

[3] WWW page http://www1.cern.ch/Adamo/ADAMO ENTRY.html.

[4] D.C. Carey and V.A. White, \NUADA, the Fermilab Neutrino Flux Program", Note

PM0011, Fermilab, June 1975.

[5] D. Rein and L. Seghal, Ann. Physics (N.Y.) 133, 79 (1981).

[6] R.P. Feynman, M. Kislinger and F. Ravndal, Phys. Rev. D3, 2706 (1971).

[7] H. Gallagher and M. Goodman, \Neutrino Cross Sections," November 1995, Fermilab

report NuMI-112.

[8] J.B Birks, \Theory and Practice of Scintillation Counting", Macmillan, New York (1964)

p40.

[9] Muon Momentum Measurement in Magnetized Iron, A.Para, NuMI-L-222.

[10] Review of Track Fitting Methods in Counter Experiments, CERN Yellow Report 81-06.

[11] The MINOS Collaboration, \Status Report on � Identi�cation in MINOS," January

1997, Fermilab report NuMI-L-228.

[12] The MINOS Collaboration, \MINOS Progress report to the Fermilab PAC," October

1997, Fermilab report NuMI-L-300.

[13] D.A. Petyt, \� ! �+X analysis in MINOS," October 1997, Fermilab report NuMI-L-

258.

[14] \Version management with CVS, Release 0.9 for CVS 1.3+", Per Cederqvist, Signum

Support AB, Linkoping, Sweden (1993).

9-25

